
J O U R N A L  O F  M A T E R I A L S  S C I E N C E  17 ( 1 9 8 2 )  7 4 1 - 7 4 6  

A model for the stress-strain behaviour of 
toughened polystyrene 
Part 1 
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A model has been developed to determine the rates of craze initiation and craze growth 
in opaque materials that deform by crazing, such as toughened polystyrene, and to 
predict their stress-strain behaviour. It is shown that crazed polystyrene toughened 
with low density polyethylene can be regarded as a series of linearly elastic crazes and 
toughened polystyrene. This implies that the amount of craze material, stress and strain 
are related in a simple fashion. As the amount of craze material can be calculated from 
the rates of craze init iation and craze growth, stress-t ime behaviour can be calculated if 
s t ra in- t ime behaviour is known, and vice versa. 

1. I n t r o d u c t i o n  
The stress-strain behaviour of polymers that 
deform by crazing has been modelled by a 
number of authors [1-7] .  In general their method 
was based on an adaption of the Johnston-  
Gilman theory for dislocation dynamics [8, 9]. 
Craze growth rates were determined microscopi- 
cally and combined with the Johnston-Gilman 
theory to obtain a relationship that describes 
stress-strain properties. This approach is obviously 
not feasible for rubber-toughened materials like 
toughened polystyrene (TPS) as the crazing 
process cannot be followed microscopically due 
to the opacity of  these materials. Furthermore, the 
use of  the Johnston-Gilman theory implies that 
crazing is regarded as a purely plastic process, 
while in fact the strain of a crazed sample is largely 
elastic. This can be concluded from the large 
decrease in strain of a crazed TPS upon removal 
of stress (see Fig. 1). These considerations induced 
the present authors to attempt a different approach 
to describe the stress-strain behaviour of polymers 
that deform by crazing. 

In the underlying study a new model of stress- 
strain behaviour is formulated, applications of this 
model on polystyrene-polyethylene (PS-PE) 
blends will be presented in a subsequent paper 
[10]. 

2. Theory 
2.1. Deformation characteristics of 

toughened polystyrene 
If toughened polystyrene (TPS) is subjected to a 
tensile test generally stress-whitening and yielding 
will be observed [11, 12]. Both phenomena are 
consequences of crazing. Many details concerning 
crazing are given in a number of comprehensive 
reviews [13-16].  Only the aspects related directly 
with the stress-strain behaviour will be discussed 
here briefly. 

The crazing process can be divided into three 
steps, initiation, growth and termination [17]. 
The rates of craze initiation and growth are stress 
dependent: as the stress increases, during, for 
instance, a constant strain rate tensile test, crazes 
will be initiated and will grow, causing stress 
whitening. At yield point these rates are so high 
that for further elongation of the sample no 
further stress increase is necessary, in effect less 
is needed to maintain the elongation rate imposed 
on the sample by the tensile tester [18]. This stress 
decrease lowers the rates of craze initiation and 
craze growth. Consequently the stress does not 
drop to zero but becomes approximately constant 
at a rather high level (see Fig. 1). At this stage 
craze termination due to, for instance, local creep 
[19] or a decrease in the craze initiation rate as 

0022--2461/82/030741--06503.22/0 �9 1982 Chapman and Hall Ltd. 741 



C = 

Figure I Stress-strain response of PE 
toughened PS in a constant stress-rate 
experiment. The strain decrease is caused 
by reversing the movement of the tensile 
tester. 

observed for surface crazes in homopolymers [20, 
21] during constant stress experiments, may 
become important. 

During a tensile test the fibrils spanning the 
crazes will be stressed and will increase in length 
by surface drawing [22, 23]. If  now the strain is 
reduced, a rapid fall in stress takes place (see Fig. 1). 
Initially the stress on the fibrils will diminish, 
causing a decrease in elastic craze strain. This 
decrease will be small due to the high modulus of 
the fibrils. However, the elastically deformed 
surroundings of  the crazes cause further closure 
of the crazes, resulting in buckling of the craze 
fibrils and a strong decrease in craze strain [24]. 

2.2. Modelling of the stress-strain 
behaviour 

In order to model the stress-strain behaviour a 
more quantitative analysis is needed than that 
given in the preceding section. 

The morphology of crazed TPS is such that 
this material can be regarded as uncrazed TPS 
connected in series with polystyrene (PS) crazes 
[18]. The length of a sample after it has been 
subjected to a tensile test can then be expressed 
as the sum of the length of TPS and of the crazes. 

The amount of PS that is converted into 
fibrillar craze material can be calculated from the 
(stress-dependent) rates of craze initiation and 
growth. If the PS content of the crazes is known 
then this content can be combined with the 
amount of PS that has been converted into craze 
material, which allows the calculation of the total 
volume occupied by crazes. As the cross-sectional 
area of TPS that is subjected to a tensile test is 
nearly constant [16] this volume can be converted 
directly into sample strain due to craze strain. In 
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this way the rates of craze initiation and growth 
can be related with craze strain, which forms the 
basis of the model. 

2.3. Elaboration of the model 
While the length of a crazed sample in principle 
can be modelled as the sum of the lengths of TPS 
and crazes, a refinement is needed in order to 
account for the effects of stress. It has already 
been noted that three forces are acting within a 
stressed tensile specimen: the retractive forces of 
the elastically strained TPS and craze fibrils, and 
the craze closing forces exerted by the elastically 
deformed surroundings of the crazes. The stress- 
strain response in the absence of craze growth 
can then be represented in a simple fashion by a 
three-spring model. Two springs are parallel, 
representing the retractive forces exerted by 
the elastically strained craze fibrils and by the 
elastically deformed surroundings of the crazes. A 
third spring connected in series with the set of the 
two parallel springs is needed to represent the 
retractive force exerted by the elastically strained 
TPS. Craze growth can be incorporated by such a 
model by allowing a length increase of the spring 
that represents the elastically strained craze fibrils 
(increase of the amount of crazed material) at the 
expense of the length of the spring that represents 
the elastically strained TPS. 

This three-spring model can be used to develop 
a relationship that describes stress-strain behaviour 
of  TPS for both positive and negative strain rates 
as the effect of buckling of the craze fibrils can be 
taken into consideration. Here a more simple 
approach is chosen by confining the stress-strain 
model to tensile tests during which no buckling 
of the craze fibrils takes places or, consequently, 



during which little or no decrease of  sample strain 
takes place. This means, in terms of the three- 
spring model, that the set of  parallel springs can 
be replaced by one spring, allowing a simple treat- 
ment of the effect of  stress on the length of the 
tensile specimen. 

Furthermore, for simplicity, changes in the 
cross-sectional area of  a sample during tensile 
deformation will be neglected as it can be shown 
that these changes never exceed 1% [16]. Assume 
that v cm 3 PS per cm 3 TPS have been converted 
into craze fibrils, then the length of the crazed 
specimen,/TPS can be represented by 

Vo- Vov 
/ T P S -  --  / 0 ( 1 - - ' / ) ) ,  ( 1 )  

Ao 

where Vo, Ao and l 0 are respectively the volume, 
the area of the cross-section and the length of the 
original uncrazed tensile specimen. 

Further, if the volume-fraction of PS within a 
craze at zero stress on the fibrils is f-1 (cm 3 PS/ 
cm 3 craze), where f is the expansion factor, then 
the length of  craze fibrils at zero stress on the 
fibrils, l e is given by 

fVoV 
lo - - -  ; V l o .  ( 2 )  

Ao 

As linear tensile elasticity is a good approximation 
for the stress-strain behaviour of non-crazed TPS, 
and assuming the same for the crazes provided 
the craze fibrils are stressed elastically, then 
Equations 1 and 2 may be combined to obtain 

(3) 
which can be rearranged as follows 

(~ 1 --lo 1 + E • s  
lff 1 , (4) 

f l  - ~ +  

or  
u 

ETpS 
v = (5) 

where Ewes is the tensile modulus of TPS, Eer is 
the tensile modulus of the craze fibrils combined 
with the effect of the closing forces, a and e are 
stress and strain respectively. In Equation 5 the 
volume-fraction of PS converted into craze fibrils, 

v, is expressed with only stress and strain as 
variables. Using this relationship v can be calcu- 
lated at any stress-strain situation if the expansion 
factor f and the moduli ETPS and Ecr are known. 
Furthermore, v can be calculated from the rates 
of craze initation and growth [25]: from the lack 
of changes in the cross-sectional area of a specimen 
during a tensile test, apart from a small Poisson 
ratio effect, it can be concluded that PS transport 
from the bulk to the crazes takes place only in the 
direction of the applied stress. 

If  now kg is defined as the rate of the surface 
drawing process that results in this transport then 
f t  r kg(r) dr denotes the increase in length at time, 
t, of  a fibril that originated at a time, r. Further, 
if k i is the rate of craze surface formation normal 
to the stress direction per unit volume TPS, then 

l f ~  f~ 
V = ~- ki(r ) kg(r ) dr dr. (6) 

Equations 4, 5 and 6 can be combined to obtain 
a general stress-strain relationship, i.e., 

I t t 
7 f :  ki(r) f ;  kg(r)dr dr 

= 1 --1o(1 + O/ETPs) lo', (7) 
f(1 + o / er  - (1 + ~/eTPs) 

or  
1 t t 

kg(r) dr dr 

e - -  U / E T p  S 

= Y(1 + ~ /Ec~)- (1  + o/ETps)" (S) 

As it may be assumed that ki and kg are dependent 
only on stress and time (at constant temperature) 
Equations 7 and 8 can be used to determine the 
stress-time behaviour if the strain-time behaviour 
is known and vice versa. 

3. Experimental procedure 
By dilatometric measurements at ambient tem- 
perature on PS-PE blends it was found that a 
ratio of  85 to 15 wt % PS to lowest density (ld) PE 
blend deforms only by crazing [26, 27]. Therefore 
this blend was chosen to verify the model set forth 
in this paper. The polystyrene used was Styron 634 
(/lIn ~ 10 s , Mw/Mn~ 2.5), obtained from Dow 
Chemical Co., the low density polyethylene was 
Stamylan 1500 (21~r n ~ 3.5 104, Mw/Mn~ 30) 
from DSM, Netherlands. Blends were prepared by 
melt mixing on a Schwabenthan laboratory mill. 
To improve bulk mixing the polymer sheet was 
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(bl Figure 2 Determination of  e e by 
(a) a stress-relaxation experi- 
ment (b) reversing the move- 
ment of  the tensile tester. 

turned 90 ~ every minute. Tensile specimens in 
accordance with ASTM D 638 III were machined 
from compression moulded sheets, and were con- 
ditioned at 21~ and 65% relative humidity (r.h.) 
for at least 48 hours. Constant strain-rate tensile 
tests were performed on an Instron tensile tester, 
constant stress tests using dead loads. The strain 
was measured directly using an HBM linear voltage 
displacement transducer and amplifier. 

4. Results and discussion 
4.1. Validity of the series model: 

determination of the craze modulus 
and the expansion factor 

The applicability of the series model can be verified 
by comparing the strain of a crazed specimen 
under stress with the strain that the same sample 
would have under zero stress, assuming that no 
buckling of the craze fibrils takes place. This also 
allows the evaluation of the craze modulus and of 
the expansion factor. 

If the series model is valid and if no craze 
fibril buckling takes place then the length of a 
crazed sample extrapolated to zero stress, le, 
equals (from Equations 1-3) 

le = lTvs + lex = lo(1 -- v) + lovf, (9) 
or  

ee = v f - - v .  (10) 

Now, using Equations 9 and 10, v can be expressed 
in terms of ee, and by inserting the result in 
Equation 3 the following relationship between e 
and e e is obtained, i.e., 
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e = ee 
l + f - ~  E~  ETv s" + ~'ETvs 

(11) 

So, if the series model is valid, a plot of e against ee 
should result in a straight line, with a slope from 
which a mathematical relation between f and Ecr 
can be derived. Therefore ee has been determined 
in two ways by extrapolation. 

If  during a constant strain rate test the strain 
rate is reduced to zero then stress relaxation takes 
place (see Fig. 2a). Crazes still initiate and grow, 
causing a stress decrease until the stress has fallen 
so low that both initiation and growth have 
stopped. For the 85-15  PS-ldPE blend this stress 
was 9.1MPa, independent of the strain rate. In 
this situation the stress on the fibrils must be small 
or zero but no buckling will take place. If the 
tensile tester is started again the stress increases 
almost linearly until it reaches such a level that 
crazes start to grow again and are being initiated. 
Extrapolation of this linear stress-strain response 
to zero stress gives ee. 

A second way of determining ee is a sudden 
reverse of the movement of the tensile test during 
a constant strain rate tensile test (see Fig. 2b). If 
this is done fast enough then initially the resulting 
stress decrease is linear with strain as hardly any 
craze growth can take place. This linear response 
again makes extrapolation to zero stress possible, 
providing %. 

The results of both methods are consistent. 
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Figure 3 The linear dependence of ee on e 
proves the applicability of a linear elastic 
series model. 

As shown in Fig. 3 a linear relationship between e e 
and e is indeed obtained, showing the applicability 
o f  the linear elastic series model. The following 
relation between Eer a n d f w a s  obtained: 

1000 
E ~  = 2.4 " (12) 

2 . 9 - - - -  Y 

Electron microscopy and optical microscopy 
work on stressed PS crazes resulted in values f o r f  
ranging from 3 to 6, averaging 4 [23, 28, 29]. 
Using the average value for f the apparent craze 
modulus was calculated to be 410 MPa. 

4.2. Time dependence of  the rates of  craze 
ini t iat ion and growth 

The possible time dependence of  the craze area 
formation normal to the stress direction can be 

evaluated by performing an Avrami-type of  
analysis [25, 30]. It can be shown from Equation 
6 that v should increase with the square of  time 
during a constant stress experiment if ki and kg are 
time-independent. Plots of  In v, as calculated using 
Equations 4 and 5 against in t have a slope of  1.6. 
This value is independent o f  the applied stress, and 
thus independent of  the duration of  the exper- 
iment. Evidently k i and kg are not time-dependent. 
The fact that the slope is somewhat less than 2 
arises from the initiation of  crazes that takes place 
during the application of  stress at the beginning 
of  the constant stress experiment. This initiation 
is indicated by the positive slope of  a plot of  v 
against t immediately after the beginning of  the 
experiment. 

The time dependence o f  v can now be expressed 
as the sum of  two terms. The first is craze initiation 
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Figure 4 Plots of In v against 
In t as determined during creep 
experiments, which indicate 
that k i and kg are not time- 
dependent. The applied stresses 
in MPa are a, 23.4; b, 22.2; c, 
21.3; d, 20.3; e, 19.1; f, 17.9; 
g, 17.1; h, 16.2; i, 15.2; j, 
14.4; k, 13.6. 
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and growth during the experiment, and is pro- 

portional to the square of time. The second term 
arises from growth of the crazes that were initiated 
during the application of stress and is only pro- 

portional to time, which explains the fact that the 

value of the slope of In v against In t is somewhat 
lower than 2. The time-dependence of v at high 
strain is not taken into consideration because of 

craze-termination effects that are neglected in this 

model. 

5. Conclusion 
As k i and k S are dependent on stress only 
Equat ion6  can be differentiated twice with 

respect to time to  obtain: 

1 1 dk S d e d v  d2v 

- f  k ikS - k S de dt dt + dt - - -7"  (13) 

Differentiating Equat ion5 and inserting the 
results in Equation 13 results in the stress-strain 

equation in differential form 

7 kikS pe;r W p +r 

x p e + r  

d2 e pe  + r/ETp s d 2 e ]  

+ d T  p e  + r dt ~ ] ' 
(14) 

where p and r are constants, defined as follows: 

f 1 
p - (15) 

and Eer ETPS 

r = f - -  1. (16) 

As p and r can be determined or are known from 

literature, only the rates of craze initiation and 
craze growth have to be known to determine 

the stress during any strain programme or the 

strain during any stress programme by solving 
Equation 14. Furthermore this equation can be 
used to determine the craze initiation and growth 

rates from known stress-strain behaviour. 
In a subsequent paper it will be shown how 

these rates can be determined from constant stress 
rate and constant strain rate experiments by 

employing Equation 14. Using values for k i and k S 
thus obtained, stress-strain behaviour can be 

predicted using the model. 
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